NAVY EDUCATION SOCIETY

CONDUCT OF COMMON ANNUAL EXAMINATION FO AY 2024-25 FOR NAVY CHILDREN SCHOOLS

MONTH	$\begin{array}{\|l} \hline \mathrm{CH} \\ \mathrm{AP} \\ \mathrm{TE} \\ \mathrm{R} \\ \mathrm{NO} \end{array}$	CHAPTER NAME	NO.OF TEACHIN G PERIOD S	UNIT (MARK)	LAB ACTIVITIES
March - May	1	Relations and Functions	15	UNIT I (8)	1. To verify that the relation R in the set L of all lines in a plane, defined by $R=\{(I, m): I \perp m\}$ is symmetric but neither reflexive nor transitive. 2. To demonstrate a function which is not one -one but is onto.
	2	Inverse Trigonometric Functions	15		
	3	Matrices	25	UNIT II (10)	
June	4	Determinants	25		3. To explore the principal value of the function $\sin ^{-1} x$ using a unit circle. 4. To find analytically the limit of a function $f(x)$ at $x=c$ and also to check the continuity of the function at that point.
	5	Continuity \& Differentiability	20	UNIT III (35)	
July	6	Application of Derivatives	10		5. To verify that amongst all the rectangles of the same perimeter, the square has the maximum area.
	7	Integrals	20		
August	8	Application of Integrals	15		6. To verify geometrically that $\vec{c} \times(\vec{a}+\vec{b})=\vec{c} \times \vec{a}+\vec{c} \times \vec{b}$ 7. To locate the points to given coordinates in space, measure the distance between two points in space and then to verify the distance using distance formula.
	9	Differential Equations	15		
	10	Vector Algebra	15		
Septemb er	11	3 D Geometry	15	UNIT IV (14)	8. To understand the concepts of local maxima, local minima and point of inflection. 9. To measure the shortest distance between two skew lines and verify it analytically.

